NODEL STUDIES AIMED AT THE SYNTHESIS OF FREDERICANYCIN A.

A SIMPLE O-QUINODIMETHANE ROUTE TO THE SPIRO MAPHTHALENE PORTION

Robert D. Bach* and Russell C. Klix

Department of Chemistry, Wayne State University, Detroit, MI 48202

Abstract: The three contiguous rings in the naphthalene portion of a model compound related to Fredericamycin A have been prepared by the Diels-Alder cycloaddition reaction of an u-bromo-o-quinodimethane intermediate to the carbon-carbon double bond of the spiro dienophile, spiro[4.4]non-2,3-ene-1,4-dione.

The recent number of synthetic efforts¹ aimed at simple model compounds related to Fredericamycin A $(1)^2$ attests both to the significance attached to this antitumor, antibiotic compound and to the difficulty in assembing its unique spiro[4.4]nonane system. In our first report we prepared the most fundamental dibenzo[4.4]nonane 2 by a mercury induced acyl migration involving the ring expansion of a cyclobutanone.^{3a} We then independently synthesized 2 employing a Diels-Alder route that utilized dienophile 3 and 1,3-butadiene.^{3b}

We now describe a highly efficient reaction sequence for the appendage of a naphthalene system to dienophile 3 in a "one-pot" reaction that encompasses three steps under exceptionally mild reaction conditions. Our synthetic strategy is centered on the concept of constructing the three contiguous rings in 8 and 9 by the Diels-Alder cycloaddition of the highly reactive a-bromo-o-quinodimethane intermediate 6 to the alkene portion of the novel spiro dienophiles 3 and 7. We had previously established that the 5,5-disubstituted cyclopent-2,3-ene-1,4-dione system 3 is a relatively reactive dienophile in the thermal Diels-Alder reaction.^{3b}

The recently reported method⁴ for the generation of o-quinodimethane intermediates by the fluoride ion initiated trans 1,4-conjugative elimination of trimethylsilylbromide from o- $\{\alpha$ -(bromo)- α -(trimethylsilyl)-methyl]benzyl bromide (5) would appear to be quite compatible with the multifarious functionality in Fredericamycin A. The reaction sequence that we now describe may therefore ultimately be applicable to a convergent synthesis of our target molecule 1.

Metalation of o-xylene with a n-butyllithium/potassium t-butoxide mixture (Lickor-reagent)⁵ and quenching with trimethylchlorosilane afforded l-trimethylsilyl-o-xylene (4). Irradiation of 4 with a sunlamp in the presence of 2.0 equiv of N-bromosuccinimide in CCl₄ for 1 h afforded the dibromide 5 (74%); bp 95 °C, 0.05 mm; ¹H NMR (CDCl₃) & 4.47, 4.57 (AB, $J_{AB} = 9$ Hz, 2 H), 4.70 (s, 1 H). The benzyl radical alpha to the trimethylsilyl group is brominated first.

Our preliminary experiments utilized spiro[4.4]non-2,3-ene-1,4-dione (7) as the dienophile. The double bond in 7 was readily introduced by the room temperature (CH_2Cl_2) bromination (1 equiv Br₂) and dehydrobromination (15 min) of the spiro[4.4]nonan-1,4-dione that was prepared by an adaptation of the Kuwajima⁶ annelation procedure (eq 1). We prefer to

use a thioketal in this ring expansion procedure since acyl migration to form the spiro 1,4-dione may be initiated by a mercuric salt under essentially neutral reaction conditions. In a typical reaction sequence, boron trifluoride etherate (1.95 mol) was added to a solution of 1,1-diethylthiocyclopentane (0.65 mol) in 300 mL of CH₂Cl₂ at -40 °C. After addition of the Lewis acid, 1,2-bis(trimethylsiloxy)cyclobutene (0.72 mol) in 200 mL of CH₂Cl₂ was added dropwise. The reaction was stirred for 2 h and then poured into 500 mL of saturated sodium bicarbonate. The organic layer was extracted and the aqueous layer washed with 200 mL (3X) of CH₂Cl₂. The combined organic layers were washed with water, NaCl (aq), dried (MgSO₄) and then concentrated affording 44% of 2-(1-ethylthiocyclopentyl)-2-trimethylsiloxycyclobutanone; bp 86-87 °C, 0.02 mm; ¹³C NMR (CDCl₃) 212.7, 60.3, 41.4, 33.8, 33.7, 27.4, 25.0, 24.2, 23.8, 14.5 ppm; 1H NMR (CDCl₃) 6 0.13 (s, 9 H), 1.13-1.18 (t, 3 H), 1.5-2.2 (m, 8 H), 2.4-2.9 (m, 6 H); IR (nest) 1783 cm-1. The pinacol type rearrangement was readily achieved by the action of the mild thiophile HgCl₂ (1.1 equiv) in refluxing benzene (15 min) affording 55% of the precursor to dienophile 7 after recrystallization. Physical data for 7; mp 46-47 °C (pentane); ¹³C NMR (CDCl₃) 208.0, 148.3, 56.1, 34.3, 27.2 ppm; ¹H NMR (CDCl₃) & 1.82-1.88 (m, 8 H), 7.24 (s, 2 H); IR (KBr) 1742, 1702 cm⁻¹; MS (70 eV) calcd. for $C_{9}H_{10}O_{2}$: 150.0680, Found: 150.0671. The compound also gave a satisfactory elemental analysis.

The Diels-Alder reactions were both carried out at room temperature. To a solution of precursor 5 (1 mmol) and the spiro dienophile 7 (1.2 mmol) in 1.5 mL of CH_2Cl_2 was added 1.3 mL of 1 M tetrabutylammonium fluoride (TBAF) in 10 mL of CH_2Cl_2 over 45 min. The reaction mixture was allowed to stir for 2 h and then concentrated and the resulting residue was partioned between ether and water. The ether layer was separated, washed with NaCl (aq) and dried (MgSO₄). The resulting oil was chromatographed on silica gel (9:1 hexane, ethylacetate) to afford 8 in 66% yield after a subsequent recrystallization (Scheme 1); mp 128-129 °C (hexane); ¹³C NMR (CDCl₃) 205.2, 136.5, 130.5, 129.4, 124.2, 61.7, 35.8, 27.6 ppm; ¹H NMR (CDCl₃) & 2.00-2.03 (m, 8 H), 7.68-7.72 (m, 2 H), 8.07-8.11 (m, 2 H), 8.48 (s, 2 H); IR (KBr) 1740, 1704 cm⁻¹; MS (70 eV) calcd. for $C_{17}H_14O_2$: 250.0994, Found 250.1000.

SCHEME 1

The pentacyclic spiro naphthalene derivative 9 was prepared by the Diels-Alder reaction of 3 (1.2 mmol) with the a-bromo diene 6 (1 mmol) to afford 280 mg of 9 (94%) after column chromatography on silica gel (CH₂Cl₂); mp 215-216 °C (hexane-ethylacetate); ¹³C NMR (CDCl₃) 201.6, 145.5, 142.4, 137.2, 136.6, 130.6, 129.7, 128.3, 126.8, 125.2, 125.0, 122.8, 68.6, 32.8, 32.1 ppm; ¹H NMR (CDCl₃) & 2.61-2.66 (t, 2 H), 3.32-3.37 (t, 2 H), 6.59-6.61 (d, 1 H), 7.01-7.75 (m, 2 H), 8.12-8.15 (m, 2 H), 8.60 (s, 2 H); IR (KBr) 1726, 1710 cm⁻¹; MS (70 eV) calcd. $C_{21}H_{14}O_{2}$: 298.0994, Found 298.1000. The initially formed Diels-Alder adducts spontaneously lose HBr and serendipitously undergo a facile air oxidation to effect aromatization of the naphthalene rings.

This overall reaction sequence can be readily adapted to include the additional oxygen functionality in the quinone half of 1 and these experiments are now in progress. Our results to date utilizing o-quinodimethane to introduce the two aromatic rings encourages us to pursue this route to the ultimate synthesis of Fredericamycin A.

ACKNOWLEDGMENT

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for the support of this research.

REFERENCES

- a) Ramo Rao, A. V.; Reddy, D. R.; Deshpanda, V. H. J. Chem. Soc., Chem. Commun. 1984, 1119.
 - b) Kende, A. S.; Ebentino, F. H.; Ohta, T. Tetrahedron Lett. 1985, 3063.
 - c) Parker, K. A.; Koziski, K. A.; Breault, G. Tetrahedron Lett. 1985, 2181.
 - d) Eck, G.; Julia, M.; Pfeiffer, B.; Rolando, C. Tetrahedron Lett. 1985, 4723, 4725.
- 2. Misra, R.; Pandey, R. D.; Silverton, J. V. J. Am. Chem. Soc. 1982, 104, 4478.
- 3. a) Bach, R. D.; Klix, R. C. J. Org. Chem. accepted for publication.
 - b) Bach, R. D.; Evans, J. C.; Klix, R. C. J. Chem. Soc., Chem. Commun. submitted for publication.
- 4. Ito, Y.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1982, 104, 7609.
- 5. Schlosser, M.; Strunk, S. Tetrahedron Lett. 1984, 741.
- Shimada, J. I.; Hashimoto, K.; B. H.; Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1759.

(Received in USA 30 December 1985)